- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Davidson, J. Tyler (2)
-
Jackson, Glen P. (2)
-
King, Jacob (2)
-
King, Jacob R. (2)
-
Lowe, Brandon D. (2)
-
Mehnert, Samantha A. (2)
-
Ruiz, Emily A. (2)
-
Ryan, William (2)
-
Adeoye, Alexandra (1)
-
Hulse, Chester (1)
-
Wesel, Richard D (1)
-
Wesel, Richard D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Maximum-likelihood (ML) decoding of tail-biting convolutional codes (TBCCs) with S=2v states traditionally requires a separate S-state trellis for each of the S possible starting/ending states, resulting in complexity proportional to S2. Lower-complexity ML decoders for TBCCs have complexity proportional to S log S. This high complexity motivates the use of the wrap-around Viterbi algorithm, which sacrifices ML performance for complexity proportional to S.This paper presents an ML decoder for TBCCs that uses list decoding to achieve an average complexity proportional to S at operational signal-to-noise ratios where the expected list size is close to one. The new decoder uses parallel list Viterbi decoding with a progressively growing list size operating on a single S-state trellis. Decoding does not terminate until the most likely tailbiting codeword has been identified. This approach is extended to ML decoding of tail-biting convolutional codes concatenated with a cyclic redundancy check code as explored recently by Yang et al. and King et al. Constraining the maximum list size further reduces complexity but sacrifices guaranteed ML performance, increasing errors and introducing erasures.more » « less
-
King, Jacob; Ryan, William; Wesel, Richard D. (, GLOBECOM 2022 - 2022 IEEE Global Communications Conference)We extend earlier work on the design of convolutional code-specific CRC codes to Q -ary alphabets, with an eye toward Q -ary orthogonal signaling. Starting with distance-spectrum optimal, zero-terminated, Q -ary convolutional codes, we design Q -ary CRC codes so that the CRC/convolutional concatenation is distance-spectrum optimal. The Q -ary code symbols are mapped to a Q -ary orthogonal signal set and sent over an AWGN channel with noncoherent reception. We focus on Q=4 , rate-1/2 convolutional codes in our designs. The random coding union bound and normal approximation are used in earlier works as benchmarks for performance for distance-spectrum-optimal convolutional codes. We derive a saddlepoint approximation of the random coding union bound for the coded noncoherent signaling channel, as well as a normal approximation for this channel, and compare the performance of our codes to these limits. Our best design is within 0.6 dB of the RCU bound at a frame error rate of 10 −4 .more » « less
-
Jackson, Glen P.; Mehnert, Samantha A.; Davidson, J. Tyler; Lowe, Brandon D.; Ruiz, Emily A.; King, Jacob R. (, Journal of the American Society for Mass Spectrometry)
-
Mehnert, Samantha A.; Davidson, J. Tyler; Adeoye, Alexandra; Lowe, Brandon D.; Ruiz, Emily A.; King, Jacob R.; Jackson, Glen P. (, Journal of the American Society for Mass Spectrometry)
An official website of the United States government
